Defining Severe Familial Hypercholesterolemia

Raul D. Santos MD, PhD
Brazil
Disclosure

• Honoraria received for consulting, speaker and or researcher activities: Astra Zeneca, Akcea, Amgen, Biolab, Esperion, Kowa, Merck, Novo-Nordisk, Sanofi/Regeneron.
Familial Hypercholesterolemia: Need for Risk Stratification

• Elevated lifetime risk of cardiovascular disease

• However, heterogeneity in this risk
 – LDL levels
 – Other risk factors
 – Susceptibility= subclinical disease

• Newer treatments
 – PCSK9 inhibitors 6-14,000 US dollars year
 – Mipomersen/Lomitapide US- 150-360,000 year
 – Lipid Apheresis US 100,000 year
Higher LDL-C = Greater Risk
Severe heterozygous familial hypercholesterolemia and risk for cardiovascular disease: A study of a cohort of 14,000 mutation carriers

Joost Besseling, Iris Kindt, Michel Hof, John J.P. Kastelein, Barbara A. Hutten, G. Kees Hovingh

CVD risk vs. non severe FH
1.25 [95% CI: 1.05-1.51], p = 0.015

Fig. 1. Kaplan–Meier incidence estimates for severe and non-severe HeFH patients.
Overlap in LDL-C Between Homozygous and Heterozygous FH
Distribution of serum total cholesterol levels in normal subjects, and heterozygous and homozygous FH patients

Serum cholesterol mmol/L (mg/dL)

Number of patients

Normal
Heterozygous FH
Homozygous FH
Molecular Defect and LDL-C Phenotype

Figure 1: Range of LDL cholesterol concentrations in severe hypercholesterolaemia, according to monogenic defects

Santos RD et al Lancet Diab Endocrinol 2016;4: 850-61
Secondary vs. Primary Prevention of Cardiovascular Disease
Secondary vs. Primary Prevention in FH and Mortality in the UK: Effects of Statins

• N=3382 patients (FUP 1980-2006)

• 370 deaths

• Standardized mortality ratios

• All aged 20–79 years CHD mortality reduced by 37% (95% CI 7–56) from 3.4- to 2.1-fold excess.
 – Primary prevention: 48% reduction in CHD mortality from 2.0-fold excess to none
 – Secondary prevention: 25% reduction in CHD mortality from 5.2 (95% CI 3.4–7.6) to a 3.9-fold excess (95% CI 3.2–4.7)

Other Risk Factors

The usual suspects
Table 2
Risk factors for CVD in heterozygous FH patients.

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Univariable OR 95% CI</th>
<th>p-value</th>
<th>Multivariable OR 95% CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male gender</td>
<td>1.72 1.53–1.92 <0.001</td>
<td></td>
<td>2.44 2.07–2.88 <0.001</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>1.08 1.08–1.09 <0.001</td>
<td></td>
<td>1.08 1.08–1.09 <0.001</td>
<td></td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>1.13 1.12–1.15 <0.001</td>
<td></td>
<td>1.04 1.03–1.06 <0.001</td>
<td></td>
</tr>
<tr>
<td>Smoking</td>
<td>1.70 1.50–1.94 <0.001</td>
<td></td>
<td>1.59 1.36–1.86 <0.001</td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>8.02 7.08–9.07 <0.001</td>
<td></td>
<td>2.38 2.01–2.82 <0.001</td>
<td></td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>6.40 5.21–7.86 <0.001</td>
<td></td>
<td>1.37 1.03–1.82 0.03</td>
<td></td>
</tr>
<tr>
<td>HDL-cholesterol (mmol/L)</td>
<td>0.55 0.46–0.65 <0.001</td>
<td></td>
<td>0.61 0.48–0.77 <0.001</td>
<td></td>
</tr>
<tr>
<td>LDL-cholesterol (mmol/L²)</td>
<td>1.16 1.13–1.19 <0.001</td>
<td></td>
<td>1.08 1.04–1.12 <0.001</td>
<td></td>
</tr>
<tr>
<td>Triglycerides (mmol/L³)</td>
<td>1.76 1.59–1.94 <0.001</td>
<td></td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Besseling et al. Atherosclerosis 2014; 233 219-223
Predicting Cardiovascular Events in Familial Hypercholesterolemia: The SAFEHEART Registry

Leopoldo Pérez de Isla, Rodrigo Alonso, Nelva Mata, Cristina Fernández-Pérez, Ovidio Muñiz, José Luis Díaz-Díaz, Adriana Saltijeral, Francisco J. Fuentes-Jiménez, Raimundo de Andrés, Daniel Zambón, Mar Piedecausa, José María Cepeda, Marta Mauri, Jesús Galiana, Angel Brea, Juan F. Sanchez Muñoz-Torrero, Teresa Padró, Rosa Argueso, José Pablo Miramontes-González, Lina Badimón, Raúl D. Santos, Gerald F. Watts and Pedro Mata

For the SAFEHEART investigators

Multivariate impact of Lp(a) >50 mg/dL:
OR 1.52
95%CI 1.05-2.21 p=0.028
Risk Equation for FH?

Lessons from Spain
22 year old women LDL-C < 100 mg/dL
66 year old men LDL-C < 100 mg/dL

Advanced Subclinical Coronary Atherosclerosis
Advanced Subclinical Coronary Atherosclerosis by Computed Tomography Angiography in FH and Cardiovascular Events

A

Receiver-operating characteristic curve

B

Cumulative incidents

Tada et al. Am J Cardiol 2015;115:724e729

n=101
Coronary Artery Calcification and Cardiovascular Events in FH

- 206 molecularly proven heterozygous FH individuals age 45±14 years
- 79.6% with high dose statin
- 64% also with ezetimibe
- On treatment LDL-C 150±56 mg/dL
- CAC present in 105 (51%)
- Follow-up median of 3.7 (quartiles: 2.7 – 6.8) years
- ASCVD events (7.2%)
- Annualized event rate (1,000 patients/year)
 - CAC 0 = 0
 - CAC 1-100= 26.4 (95% CI 12.9 - 51.8)
 - >100 = 44.1 (95% CI 26.0 - 104.1)

Survival free from MACE

- CAC = 0
- CAC 1 - 100
- CAC > 100

Miname, Bittencourt & Santos JACC Cardiovasc Imaging 2018 in press
Defining severe familial hypercholesterolaemia and the implications for clinical management: a consensus statement from the International Atherosclerosis Society Severe Familial Hypercholesterolemia Panel

Santos RD et al Lancet Diab Endocrinol 2016;4: 850-61
Risk Conditions to Consider

- Older > 40 years old without treatment
- Smoking,
- Male gender
- Lp(a)>50 mg/dL
- Low-HDL-C (<1mmol/L or 40 mg/dL),
- Hypertension
- Diabetes mellitus
- Family history of early cardiovascular disease in first degree relatives (<55 years old in males and < 60 years old in females)
- Chronic kidney disease (defined as an estimated glomerular filtration rare < 60 ml/min/1.73 m²
- BMI >30 kg/m²

Santos RD et al Lancet Diab Endocrinol 2016;4: 850-61
Severe Familial Hypercholesterolemia-IAS

| At presentation (untreated LDL-C) | LDL –C >10 mmol/L (400 mg/dL)
LDL-C >8.0 mmol/L (310 mg/dL) + one high risk condition
LDL-C > 5 mmol/L (190 mg/dL) + two high risk conditions | Realistic goal: reduce ≥ 50% LDL-C
Ideal goal: LDL-C < 2.5 mmol/L (100 mg/dL) |
|---|---|---|
| With subclinical atherosclerosis assessment | **Advanced subclinical atherosclerosis**
Coronary:
A-Coronary artery calcium (CAC) score > 100 Agatston units, or > 75th percentile for age and gender*
B-Computed tomography angiography (CTA) with obstructions > 50% or presence of non-obstructive plaques > one vessel. | Realistic goal: reduce ≥ 50%
Ideal goal : LDL-C < 1.8 mmol/L (70 mg/dL) |
| Presence of clinical atherosclerotic cardiovascular disease | | Realistic goal: reduce LDL-C ≥ 50%
Ideal goal: LDL-C < 1.8 mmol/L (70 mg/dL) |

Santos RD et al Lancet Diab Endocrinol 2016;4: 850-61
Treatment
Figure 2: Treatment algorithm for severe familial hypercholesterolaemia
The therapeutic strategy is based on refractoriness of treatment, drug or procedure availability, reimbursement, and approval by local regulatory agencies.

Santos RD et al Lancet Diab Endocrinol 2016;4: 850-61
Conclusions: Severe Familial Hypercholesterolemia

- Elevated lifetime risk of cardiovascular disease
- However, heterogeneity in this risk
 - LDL levels
 - Other risk factors
 - Susceptibility= subclinical disease
 - Previous CVD
- Identify highest risk patients in order to have best treatment cost-effectiveness