CAN SERUM DEPLETION IN THE LOWER ZONE OF EXTENSIVELY THICKENED PLAQUES IN AORTAS INITIATE CALCIFICATION?

Howard H.T. Hsu, Ph.D., Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160

The issue of pathological implications and the underlying causes of arterial calcification remain enigmatic. The possibility of vascular calcification exerting both beneficial and/or detrimental effects on atherosclerosis has been suggested. Doherty and Detrano [1] proposed that calcification may stabilize aortic walls weakened by the accumulation of lipids and inflammatory substances. Farb et al. [2] provided clinical observations that advanced calcification can cause the aortic walls to become brittle with subsequent ruptures. Other significant clinical effects of vascular calcification include myocardial infarction [3], failures of bioprosthetic cardiac valves [4], and hypertension resulting from inflexibility of the aortic walls [5].

The prevailing concept of a close association of osteogenesis with vascular calcification [6-9] may not be fully appreciated since bone formation in atheromatous regions is a rare event and that several osteogenesis-related proteins are also present in other soft tissue during organogenesis [10,11]. Bone resorption processes [12] and nano-bacterial infection [13] as an alternative cause of arterial calcification is not consistent with a rabbit model in which aortic calcification occurs in youth at a specific site in which bone resorption and infection is least expected [14,15].

Accumulated data in this laboratory demonstrate a close correlation of calcifying vesicle accumulation with calcification in thoracic aortas from rabbits fed cholesterol supplemental diets and human atherosclerotic subjects [16,17]. Histological examinations of rabbit atherosclerotic thoracic aortas indicate that calcification starts specifically at the lower zone of plaques adjacent to smooth muscle layers (Figure 1) [14,15]. Bone-obligatory marker alkaline phosphatase activity was absent at this provisional calcification site using a specific activity staining procedure [18]. Neither calcification nor osteoblast-associated osteoid was present. Since calcification did not occur until plaques are extensively thickened, blockage in the blood supply to the sites may play a role in the underlying mechanism of aortic calcification.

A rabbit smooth muscle cell culture model was used to determine whether lack of serum in culture media could induce calcification. As a result, serum was found to be a profound source of inhibitors for calcification induced by high Ca x P ion products. A mere serum concentration of 0.04-0.07% from fetal bovine and rabbits was able to inhibit cell-mediated or thermodynamically induced spontaneous calcification by half [19]. Serum depletion in cell culture appears to be capable of inducing membrane translocation as evidenced through a specific apoptosis dye uptake by cells [19]. The translocation leads to exposure of calcifying vesicles and probably Pi-rich source of intracellular metabolites such as ATP and nucleotides for calcification. Furthermore, proteomic analyses of calcifying vesicles revealed several calcification-related proteins including calpactin, calreticulin, integrin, fibrillin, ATPase, and ATP-synthase [19]. Moreover, current data indicate that ATP- or AMP-initiated calcification in culture media by vesicles isolated from rabbit aortas can be inhibited by serum.

Although the role of serum in calcification remains unclear, a recent study demonstrates that dehydration by ethanol increased calcium binding activity of serum by 5-fold. Whether the large calcium binding capacity of serum may contribute to mineralization inhibition would be
interesting to investigate. Altogether, the site-specific calcification independent of osteogenesis is a net complex manifestation of several factors such as serum depletion and exposure of intracellular Pi-yielding calcifying vesicles through membrane translocations.

![Figure 1. Calcification initiates at the lower zone of plaques. Normal rabbit aortas (panels A and B) show no signs of intimal thickening (A) or alizarin red stains (B) indicative of mineral deposition. Thickened calcified aortas induced by cholesterol supplemental diets are shown in panels C and D.](image)

References

